Approximate Level Method for Nonsmooth Convex Minimization
نویسنده
چکیده
In this paper, we propose and analyse an approximate variant of the level method of Lemaréchal, Nemirovskii and Nesterov for minimizing nonsmooth convex functions. The main per-iteration work of the level method is spent on (i) minimizing a piecewise-linear model of the objective function and (ii) projecting onto the intersection of the feasible region and a level set of the model function. We show that, by replacing exact computations in both cases by approximate computations, in relative scale, the theoretical iteration complexity increases only by a small factor which depends on the approximation level and reduces to one in the exact case.
منابع مشابه
On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملOn solving simple bilevel programs with a nonconvex lower level program
In this paper, we consider a simple bilevel program where the lower level program is a nonconvex minimization problem with a convex set constraint and the upper level program has a convex set constraint. By using the value function of the lower level program, we reformulate the bilevel program as a single level optimization problem with a nonsmooth inequality constraint and a convex set constra...
متن کاملA Modified Fletcher-Reeves-Type Method for Nonsmooth Convex Minimization
Conjugate gradient methods are efficient for smooth optimization problems, while there are rare conjugate gradient based methods for solving a possibly nondifferentiable convex minimization problem. In this paper by making full use of inherent properties of Moreau-Yosida regularization and descent property of modified conjugate gradient method we propose a modified Fletcher-Reeves-type method f...
متن کاملA Decomposition Algorithm for Convex Nondifferentiable Minimization with Errors
A decomposition algorithm based on proximal bundle-type method with inexact data is presented for minimizing an unconstrained nonsmooth convex function f . At each iteration, only the approximate evaluation of f and its approximate subgradients are required which make the algorithm easier to implement. It is shown that every cluster of the sequence of iterates generated by the proposed algorith...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Optimization Theory and Applications
دوره 152 شماره
صفحات -
تاریخ انتشار 2012